Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.03.23286756

ABSTRACT

Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at multiple levels of government. However, this technology has not been well assessed at more granular scales, including large work sites such as University campuses. Between August 2021-April 2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater from multiple complimentary sewer catchments and residential buildings spanning the University of Calgary's campus and how this compared to levels from the municipal wastewater treatment plant servicing the campus. Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling sites - regardless of several normalization strategies - with certain catchments consistently demonstrating values 1-2 orders higher than the others. Additionally, our comprehensive monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which was significantly lower than the surrounding community (p[≤]0.01). Real-time contact tracing data was used to confirm an association between wastewater SARS-CoV-2 burden and clinically confirmed cases proving the potential of WBS as a tool for disease monitoring across worksites. Allele-specific qPCR assays confirmed that variants across campus were representative of the community at large, and at no time did emerging variants first debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease burden across large, complex worksites.


Subject(s)
COVID-19
4.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.22.23284878

ABSTRACT

Wastewater-based surveillance (WBS) is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19 impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with local workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.3 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5% (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4,524 unrelated absences COVID-19 cases were recorded. Employee absences significantly increased as wastewater signal increased through pandemic waves. Strong correlations between COVID-19-confirmed absences and wastewater SARS-CoV-2 signals (N1 gene: r=0.824, p<0.0001 and N2 gene: r=0.826, p<0.0001) were observed. Linear regression with adjusted R2-value demonstrated a robust association (adjusted R2=0.783), when adjusted by 7 days, indicating wastewater provides a one-week leading signal. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P<0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.


Subject(s)
COVID-19 , Skull Base Neoplasms
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.07.22272055

ABSTRACT

Wastewater monitoring of SARS-CoV-2 allows for early detection and monitoring of COVID-19 burden in communities and can track specific variants of concern. Targeted assays enabled relative proportions of SARS-CoV-2 Omicron and Delta variants to be determined across 30 municipalities covering >75% of the province of Alberta (pop. 4.5M) in Canada, from November 2021 to January 2022. Larger cities like Calgary and Edmonton exhibited a more rapid emergence of Omicron relative to smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a more remote northern city with a large fly-in worker population. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden prior to the observed increase in newly diagnosed clinical cases throughout Alberta, which peaked two weeks later. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of emerging pathogens including SARS-CoV-2 variants.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.19.21266588

ABSTRACT

Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.3 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December, 2020) and the third-wave of the COVID-19 pandemic (mid-April to May, 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06 percent (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 and N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgarys three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.20.21251520

ABSTRACT

Background: SARS-CoV-2 has been detected in wastewater and its abundance correlated with community COVID-19 cases, hospitalizations and deaths. We sought to use wastewater-based detection of SARS-CoV-2 to assess the epidemiology of SARS-CoV-2 in hospitals. Methods: Between August and December 2020, twice-weekly wastewater samples from three tertiary-care hospitals (totalling >2100 dedicated inpatient beds) were collected. Wastewater samples were concentrated and cleaned using the 4S-silica column method and assessed for SARS-CoV-2 gene-targets (N1, N2 and E) and controls using RT-qPCR. Wastewater SARS-CoV-2 as measured by quantification cycle (Cq), genome copies and genomes normalized to the fecal biomarker PMMoV were compared to the total daily number of patients hospitalized with active COVID-19, confirmed cases of hospital-acquired infection, and the occurrence of unit-specific outbreaks. Results: Of 165 wastewater samples collected, 159 (96%) were assayable. The N1-gene from SARS-CoV-2 was detected in 64.1% of samples, N2 in 49.7% and E in 10%. N1 and N2 in wastewater increased over time both in terms of amount of detectable virus and the proportion of samples that were positive, consistent with increasing hospitalizations (Pearsons r=0.679, P<0.0001, Pearsons r=0.728, P<0.0001, respectively). Despite increasing hospitalizations through the study period, wastewater analysis was able to identify incident nosocomial-acquired cases of COVID-19 (Pearsons r =0.389, P<0.001) and unit-specific outbreaks by increases in detectable SARS-CoV-2 N1-RNA (median 112 copies/ml) versus outbreak-free periods (0 copies/ml; P<0.0001). Conclusions: Wastewater-based monitoring of SARS-CoV-2 represents a promising tool for SARS-CoV-2 passive surveillance and case identification, containment, and mitigation in acute- care medical facilities.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL